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Unbiased Rounding for HUB Floating-point
Addition

Julio Villalba, Javier Hormigo and Sonia González-Navarro

Abstract—Half-Unit-Biased (HUB) is an emerging format
based on shifting the represented numbers by half Unit in the
Last Place. This format simplifies two’s complement and round-
to-nearest operations by preventing any carry propagation. This
saves power consumption, time and area. Taking into account
that the IEEE floating-point standard uses an unbiased rounding
as the default mode, this feature is also desirable for HUB
approaches. In this paper, we study the unbiased rounding for
HUB floating-point addition in both as standalone operation and
within FMA. We show two different alternatives to eliminate the
bias when rounding the sum results, either partially or totally.
We also present an error analysis and the implementation results
of the proposed architectures to help the designers to decide what
their best option are.

Index Terms—HUB format, unbiased rounding

I. INTRODUCTION

Nowadays, the development of special purpose systems is
exploding due to the emergence of new application areas,
such as machine learning [1], [2], Internet-of-Things [3], green
computing [4], [5], [6] and others. Many of these applications
requires floating-point (FP) computation which is traditionally
very costly. As a consequence, in the last years, there is a
growing interest in finding new FP approaches which achieve
better figures when implementing these specific systems.

Probably the most radical FP approach proposed until now
is the Flexible Floating-Point (FFP) format [7] launched by
Synopsys, which is totally different to the IEEE FP stan-
dard [8]. FFP changes the representation of both significand
and exponent, uses truncation as the only rounding mode
and does not normalize, among other changes. A more subtle
modification is proposed by using HUB approach [9].

HUB is the acronym of Half-Unit-Biased format and it is
based on shifting the standard numbers by half unit in the
last place (ULP). This representation format has important
features [9] like the two’s complement is carried out by bit-
wise inversion, the round-to-nearest is performed by simple
truncation and the double rounding error [10] never happens.
Furthermore, it requires the same number of bits for storage
as its conventional counterpart for the same precision.

In [11], the authors analyze the benefits of using HUB
format for FP adders, multipliers, and converters. Experimental
analysis demonstrate that HUB format maintains the same ac-
curacy as the conventional format for the aforementioned units,
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simultaneously improving area, speed, and power consumption
(14% speed-up, 38% less area and 26% less power for single
precision FP adder, 17% speed-up, 22% less area and slightly
less power for the FP multiplier).

The basic HUB adder presented in [11] performs round-
to-nearest, but it may introduce some bias. The importance
of having an unbiased rounding mode (i.e., having equal
probability of rounding up or down for the tie case) has
been highlighted in the literature since long time ago [12],
[13]. It eliminates the drift effect [14] and reduces the power
of quantification error in signal processing [15]. In fact, an
unbiased rounding mode is the default mode in the IEEE FP
standard [8].

In this paper, we analyze the different sources of bias which
are present in previous HUB adder architecture and propose
two new architectures to avoid these sources of bias. We also
provided an error analysis and an implementation comparison
of the different adders.

The rest of the paper is organized as follows: Section II
summarizes the fundamental of the HUB representation and
reviews the basic HUB adder [11]. Section III is devoted
to analyze the different sources of bias whereas Section IV
presents the new architectures proposed to perform partial or
total unbiased rounding. Section V analyzes the implementa-
tion of unbiased rounding for a FMA unit. The error analysis
and the implementation results are presented in Sections VI
and VII respectively. Finally, in the last section, we give the
summary and conclusions.

II. HUB FORMAT AND ADDER FOR FP NUMBERS

A. HUB format for FP numbers

The mathematical fundamentals and a deep analysis of
the HUB format can be found in [9]. In this section, we
summarize the HUB format defined in [9] and particularize
it for normalized HUB FP numbers.

A HUB FP number is similar to a regular one but its
significand follows the HUB format. Thus, the only difference
compared with the binary FP standard [8] is the format for
the significand. Without any loss of generality, in this paper,
we use HUB FP operands with normalized significand in
radix–2. Let us define x as a FP radix–2 HUB number,
which is represented by the triple (Sx,Mx, Ex) such that
x = (−1)SxMx2

Ex , where the significand Mx is a normalized
HUB magnitude. We define a normalized HUB significand as
a value Mx such that 1 < Mx < 2. The HUB significand is
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Fig. 1. Representative versus operational forms

a f +1 bit vector with the form Mx = (Mx0
,Mx−1

,Mx−2
, · ·

·,Mx−f
) such that:

Mx =

[
f∑

i=0

Mx−i
· 2−i

]
+ 2−f−1 (1)

where 2−f−1 is the shifting (i.e., half ULP) and Mx0
= 1.

Let representative form denote the vector. Thus, although the
normalized HUB significand is represented by f + 1 bits,
according to expression (1) the binary version of a normalized
HUB significand is composed by f + 2 bits:

Mx = 1.Mx−1Mx−2 · · ·Mx−f
1 (2)

The binary version is required only to operate with HUB
numbers. Thus, let operational form denote the binary version
(see Fig. 1). We can see that the least significant bit (LSB) of
the operational form of any nonzero HUB number is always
equal to 1. Thus, we make this bit implicit for the HUB format
(as the implicit most significant bit (MSB) of the significand
in the IEEE normalized FP numbers). Let ILSB denote the
implicit LSB of a HUB number. The ILSB is not needed to
represent, to store, or to transmit a HUB number. It could be
explicitly required only to perform operations.

For systems where round-to-nearest is required, a rounding
bit is normally needed. Since the round-to-nearest for HUB
format is carried out by truncation, the rounding bit is not
required anymore. Thus, in spite of having an extra bit in the
operational form, this extra bit of HUB numbers is compen-
sated by the lack of a specific rounding bit. As a consequence,
the data–path is not always incremented for HUB approach,
as shown for the division in [16] or addition in [11].

Let us deal with round-to-nearest for HUB format for FP
numbers. Let m denote the number of bits of the operational
form of a normalized HUB significand (that is, including the
ILSB). Consider a normalized non-HUB significand M which
is composed by p bits (M [0 : p − 1]) with p > m − 1. We
want to round this number to a HUB number. The rounded
normalized HUB number M ′ is given by the m− 1 MSB of
M (representative form):

M ′[0 : m− 2] = M [0 : m− 2] (3)

Thus, the rounded HUB number M ′ is achieved by truncation
of the p− (m−1) LSB of M . Due to the definition of a HUB
number (see (1) with f = m − 2) this truncation produces a
round-to-nearest number, as proved in [9].

On the other hand, when a number is just between two
Exactly Represented Numbers (ERNs) (tie condition), the
proposed rounding is always carried out in the same direction
(up), which produces a bias. In some applications, this causes
annoying statistical anomalies. To avoid this problem in those
applications, an unbiased round-to-nearest is proposed in [9]

(Operational form)
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Fig. 2. HUB Floating-point adder proposed in [11] (architecture A)

for HUB. The tie condition takes place when the bits beyond
bit M [m − 2] are all 0, that is M [m − 1 : p − 1] = 0...0. In
this case, the unbiased rounded normalized HUB number M ′

is (representative form):

M ′[0 : m− 2] = M [0 : m− 3], 0 (4)

Thus, the unbiased rounding is achieved by truncation and
forcing the LSB of the representative form to zero, i.e. bit
M ′[m− 2] = 0, as proved in [9]. Thus, this unbiased round-
to-nearest is not so different from the IEEE-754 tie to even,
since it is like a tie to even of the representative form (with
no carry propagation).

B. Basic adder for HUB FP numbers

A simple design of a HUB FP adder is presented in [11]
and shown in Fig. 2. In comparison with the conventional
numbers FP architecture counterpart, the HUB architecture
does not use the circuits required for calculating the sticky bit
as well as the round-to-nearest circuit since the HUB round-to-
nearest is carried out simply by truncation. As a consequence,
an important reduction both in area and power consumption
is achieved as proved in [11]. Let A denote the architecture
proposed in [11].

Architecture A carries out the addition of two HUB FP
numbers with rounding-to-nearest for the tie-away-from-zero
case. Therefore, the rounding of the significand is biased for
the tie case, i.e., the rounding is always performed in the same
direction: up. In the next sections, we analyze deeply when
the tie condition occurs (or not) and propose two designs to
prevent bias when rounding.
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III. SOURCES OF BIAS WHEN ROUNDING

Some bias in the rounding may be produced when the tie
condition occurs. For HUB numbers, the tie condition occurs
when the result of a operation after normalization has a bit 0
in the position of the ILSB and the rest of bits on its right
are all 0, i.e. when the discarded bits after truncation are all
zero. The parenthesis ( ) denotes the position of the ILSB.
Next, we show some examples of possible actual results after
normalization:

ILSB
|

01.01101(1) Not tie (discarded: 1000)
01.01101(0) Tie (discarded: 0000)
01.01100(1)001 Not tie (discarded: 1001)
01.01101(0)000 tie (discarded: 0000)
01.01100(0)010 Not tie (discarded: 0010)

|
LSB*

From now on, let LSB* denote the LSB of the representative
form (i.e the underlined bit in 01.01100(0)010), x means
either 0 or 1 and d the difference between the exponents of
the operands (alignment). The effective operation (Eop) is
a function of the operation (op = 0 for addition, op = 1
for subtraction) and the sign of the operands. In the next
subsections, we analyze the tie condition (which depends on
the effective operation and the alignment).

A. Effective addition with d ≥ 1 (Eop=0)

In this case, the tie condition is never produced since there
is at least a bit 1 beyond the ILSB position. The next examples
show the situation:

01.xxxxx(1) [operational form]
+ 00.1xxxx(x)1 [d=1]
-------------

01.xxxxx(x)1 not tie case

01.1xxxx(1) [operational form]
+ 00.1xxxx(x)1 [d=1]
-------------
010.xxxxx(x)1 [overflow]
-->
01.0xxxx(x)x1 not tie

B. Effective subtraction with d ≥ 2 (Eop=1)

If d ≥ 2 the result of the subtraction is either normalized or
it requires a left shift of one position [17] (that is, the pattern of
the result is 01.xxx... or 00.1xxx...). The tie condition is never
fulfilled in the result since there is at least a bit 1 beyond the
position of the ILSB (due to the shift of the second operand).
The next example shows the situation:

01.1xxxx(1) [operational form]
- 00.01xxx(x)x1 [d=2]
-------------

01.xxxxx(x)x1 not tie

Another example (left shift required):

01.00000(1) [operational form]
- 00.01xxx(x)x1 [d=2]
-------------

00.1xxxx(x)x1 not tie
<--

01.xxxxx(x)1 not tie

C. Effective aligned addition (d=0, Eop=0)

In this case, an overflow is always produced, and a right
shift of one position is required. The tie condition takes place
if the LSB* of the result of the addition is 0 (before shifting).
Otherwise, there is not a tie:

01.xxxxx(1) [operational form]
+ 01.xxxxx(1)
-------------
010.xxxyz(0) [overflow]
-->
01.0xxxy(z)0 [z=0 tie, z=1 not tie]

Thus, the tie condition depends on bit z. If z=0, the tie case
is produced and it is a source of bias.

D. Effective aligned subtraction (d=0, Eop=1)

Let Mu,Mv denote the two normalized significands of two
HUB numbers (U, V ) with the same exponent. Assume that
Mu ≥ Mv . Since 1.000···00(1) ≤ Mv ≤ Mu ≤ 1.111···11(1),
the subtraction fulfills 0 ≤ Mu − Mv ≤ 0.111 · · · 111(0).
Consequently, the result always fulfills the tie condition be-
cause a left shift of at least one position is always required
for normalization, which involves the injection of a 0 at the
position of the ILSB of the normalized result, as shown in the
next example:

Mu>Mv
01.xxxxx(1) [operational form]

- 01.xxxxx(1)
-------------

00.1xxxx(0)
<--
01.xxxx0(0) [tie case]

Similarly, if Mu ≤ Mv we have that −0.111 · · · 1101 ≤
Mu −Mv ≤ 0 and thus, the tie condition always takes place,
as shown in the next example:

Mu<Mv
01.xxxxx(1) [operational form]

- 01.xxxxx(1)
-------------

11.110xx(0)
<--
10.xx000(0) [tie case]

Thus, the tie condition is always produced and this is
another possible source of bias.

E. Effective non-aligned subtraction with d=1 (Eop=1)

If the result of the subtraction is already normalized, the
tie condition never fulfills since the ILSB(=1) of the second
operand is out of the word-size, which involves a bit 1 at least
in those positions, as shown in the next example:

01.10010(1) [operational form]
- 00.10000(0)1 [d=1]
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-------------
01.00010(0)1 [Normalized, no tie case]

If the result of the subtraction is not normalized and the
most significant fractional bit is 1, the tie condition does not
fulfill, as shown in the next example:

01.10010(1) [operational form]
- 00.11000(0)1 [d=1]
-------------

00.11010(0)1
<--
01.10100(1) [Normalized, no tie case]

On the other hand, the tie case is possible if the result of the
subtraction has the integer bit 0 and the most significant frac-
tional bit 0 (that is, the result has the pattern 00.0xxx...x(x)1),
as shown in the next example:

01.00010(1) [operational form]
- 00.11100(1)1 [d=1]
-------------

00.00101(1)1
|
LSB*

<--
01.01110(0)0 [Normalized, tie case]

In this case, the resulting HUB number would be always
rounded up (001.01110(1)), which produces a bias. This is
the last source of bias.

To sum up, the three possible sources of bias are: i) aligned
addition (case d=0, Eop=0), ii) aligned subtraction (case d=0,
Eop=1) and iii) subtraction and d=1 (case d=1, Eop=1). Next,
we describe the proposed architectures to deal with these
sources of bias.

IV. ADDERS FOR UNBIASED ROUNDING

The two new designs proposed in this paper are shown in
Fig. 3 and Fig. 4. Architecture A+ (Fig. 3) is designed to
perform partial unbiased rounding (only aligned addition case),
whereas architecture A++ (Fig. 4) resolves all the previous
source of bias, producing unbiased rounding.

A. Architecture for partial unbiased rounding: A+

The architecture A+ shown in Fig. 3 only prevents the bias
due to one of the sources: aligned addition. The way to solve
the situation is described in [16]: rounding by forcing the
LSB* of the shifted result (bit y in the example of subsection
III-C) to zero. The next example shows the tie case (z=0), and
how to achieve an unbiased rounding:

01.xxxx0(1) [operational form]
+ 01.xxxx1(1)
-------------
010.xxxy0(0) [overflow]
-->
01.0xxxy(0)0 tie case, exact value
Results as a function of y in 01.0xxxy(0)0
case y=0

01.0xxx0(0)0 [tie case, exact value]
01.0xxx0(1) [final rounded up]
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Fig. 3. Partial unbiased HUB FP adder: architecture A+

case y=1
01.0xxx1(0)0 [tie case, exact value]
01.0xxx0(1) [final rounded down]

If the probability of having y=0 or 1 is the same, it produces
an unbiased rounding in this case.

The hardware required to perform this unbiased rounding
is very simple: one AND and one OR gates placed along the
final L/R1-SHIFTER of architecture A+ (see Fig. 3). As can
be noted, A+ is a slight modification of the adder A.

B. Architecture for unbiased rounding: A++

The architecture A++ shown in Fig. 4 eliminates the three
sources of bias described in previous section. It prevents the
significand comparator required in architecture A (Fig. 2). In
this way, the result of the operation can be positive or negative
(this feature allows preventing the tie cases not supported by
A+). A leading zero-one detector (LZOD) is required in the
new architecture to detect if the result is negative, as well as
the final conditional inverter, in order to obtain the magnitude
of the result if this were negative.

The conditional inverter after the swap module of Fig. 4
and the ILSB at the input of the R-Shifter are in charge of
obtaining the two’s complement of the right operand when an
effective subtraction is required (box ”logic” in Fig. 4 controls
the effective operation).

Note that the two’s complement of a HUB number does not
involve a carry propagation [9]. When an effective subtraction
is performed, the conditional upper inverter carries out a bit-
wise inversion of the m MSB of the significand (that is, the
representative form). On the other hand, when an effective
addition is performed, the conditional inverter does not modify
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Fig. 4. Unbiased HUB FP adder: architecture A++

the data. At the input of the R-shifter, the value ILSB=1 is
concatenated to form the right operand to the adder (m + 2
bits) which represents the two’s complement of the number in
case of a subtraction.

For the case of aligned addition (d=0, Eop=0), the hardware
required to obtain unbiased results is the same as the described
in adder A+. This hardware is enclosed in the logic box enti-
tled ”unbiased” in Fig. 4. This ”unbiased” box also contains
the logic required to manage the tie condition produced in the
case of performing a subtraction when d=1 (case d=1, Eop=1).
To avoid this source of bias, we propose the following strategy:
if the LSB* of the result is 0 (before shifting), we will carry out
a rounding up, whereas if it is 1, we will perform a rounding
down (at first, the value of the LSB* of the result may be 0
or 1 with the same probability).

The rounding up is achieved easily by truncation after
shifting (regular case). For the rounding down, we follow a
simple algorithm in the left shifting process. It consists of
inserting a first bit 0 and the rest of bit 1 (that is, in the
shifting we follow the pattern 0111...). This is shown in the
next example:

01.00000 0100(1) [operational form]
- 00.11111 1000(1)1 [d=1]
-----------------

00.00000 1011(1)1 [exact result, not normal.]

ALGORITHM for normalization and rounding down
Shifts step by step:
<--
00.00001 0111(0) [1st shift, 0 inserted]

<--
00.00010 1110(1) [2nd shift, 1 inserted]

<--
00.00101 1101(1) [3rd shift, 1 inserted]

<--

00.01011 1011(1) [4th shift, 1 inserted]
<--
00.10111 0111(1) [5th shift, 1 inserted]
<--
01.01110 1111(1) [6th shift, 1 inserted]

FINAL NORMALIZED HUB NUMBER (AFTER ROUNDING):
01.01110 1111(1)
EXACT RESULT (NOT ROUNDED, normalized)
01.01111 0000(0)

Hence, if ”d=1”, and the effective operation is 1, the box
”unbiased” carries out the injection of the corresponding
sequence depending on the value of LSB*(c) (c is output of
the two’s complement adder of Fig. 4). Otherwise, it always
inserts 0.

For the case of aligned subtraction (d=0, Eop=1), we can
prove that depending on the relative position of the operands
in architecture A++ (U and V ), an effective rounding up or
rounding down is performed, which means no bias is produced
(assuming that the input data has the same probability of being
placed anywhere left or right). This means that U + (−V )
involves a rounding up whereas (−V )+U involves a rounding
down (considering the same probability for the events U +
(−V ) and (−V ) + U ).

Let us show a simple example of 5-bit significands over the
architecture A++. Assume two aligned HUB numbers U and
V with significands Mu = 01.1010(1) and Mv = 01.0100(1)
(bit sign included) and exponent 0 for both numbers. We want
to perform the operation U + (−V ). First of all, the exact
result of this operation is 01.10000 exp − 2 (tie condition),
which is not a HUB number and it is just between the next
two HUB ERNs: 01.01111 exp− 2 and 01.10001 exp− 2.
Let us follow the evolution of the subtraction of U + (−V )
for the architecture A++ in Fig. 5 in two different ways: i)
Mu + (−Mv) (Fig. 5.a) and ii) (−Mv) +Mu (Fig. 5.b).

i) Mu + (−Mv). In this case, Mx = Mu (left input at Fig.
5.a) and My = Mv (right input), Sx = Sy = 0 and op=1
(Eop=1). Thus, the left and right inputs of the 2’s comple-
ment adder are 01.1010(1) and 10.1011(1) respectively.
The output c = 00.0110(0) and the result after the L
Shifter module is 01.1000(0) exp− 2 (exact value, sign
bit included). Since the result is positive, the conditional
inverter module does not modify the value, resulting in
the final HUB ERN 01.1000(1) exp−2, sign = 0 which
involves a positive bias of 0.00001 exp − 2 (rounding
up).
Mu+(-Mv)

01.1010(1) [operational form]
- 01.0100(1)
-------------

00.0110(0)
<--
01.1000(0) [tie case]
01.1000(1) [Rounded up]

ii) (−Mv) + Mu. In this case, Mx = Mv (left input at
Fig. 5.b) and My = Mu (right input), Sx = 1, Sy = 0
and op=0 (Eop=1). Thus, the left and right inputs of the
2’s complement adder are 01.0100(1) and 10.0101(1)
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respectively. The output c = 11.1010(0) and the result
after the L Shifter module is 10.1000(0) exp− 2 (exact
value, sign bit included). Since the result is negative, the
conditional inverter module inverts the bits, resulting in
the HUB number 01.0111(1) exp = −2, sign = 0
which involves a negative bias of 0.00001 exp − 2
(rounding down).
(-Mv)+Mu
-01.0100(1) [operational form]

+ 01.1010(1)
-------------

11.1010(0)
<--
10.1000(0) [tie case]
01.0111(1) [Rounded down]

Thus, U + (−V ) produces a rounding up and (−V ) + U
produces a rounding down of the same magnitude.

In Table I we show the direction of the rounding as a
function of the position of the operands for effective aligned
subtraction. From the analysis of this table we deduce that
a rounding up(down) is obtained if the left operand is posi-
tive(negative).

As a conclusion, depending on the position of the operands,
a rounding up or down is performed. Since we do not know
the position of the operands a priori, we do not know the
direction of the final rounding (up or down) which ensures
that the output is not biased (assuming the same probability
of having operations U + (−V ) and (−V ) + U ).

TABLE I
DIRECTION OF THE BIAS AS A FUNCTION OF THE POSITION OF THE

OPERANDS FOR EFFECTIVE ALIGNED SUBTRACTION

sign(A) sign(B) Rounding
Left operand op Right operand Eop ↑↓

+ + - - ↑
+ - + - ↑
- + + - ↓
- - - - ↓

On the other hand, in the rare case in which we a priori
know the input pattern, another alternative solution can be
given by the swap module of Fig. 4. When d=0 and a
subtraction is carried out, this module can swap the inputs
depending on the value of the LSB* of the input (as performed
in the classic case of unbiased systems), achieving the desired
unbiased rounding. Note that this case of bias can not be
prevented in the architecture A since the operation U+(-V)
is always performed with the greatest absolute number of the
left input of the adder due to the comparator.

V. UNBIASED ROUNDING FOR A FMA DATA-PATH

Nowadays, addition is performed through a Fused Multiply-
Add (FMA) data-path in many processors. This case is ana-
lyzed in this section.

The addition operation in a FMA unit may occur in two
different cases: from a real FMA operation involving three
operands (case 1) or from an actual addition operation in-
volving only two operands (case 2). In case 1, the result of
the multiply operation (double size) is added to the other
significand. In case 2, one of the multiplier input is set to
one and the addition is between two operands of the same
size just as in an isolated addition operation.

Regarding HUB numbers, in case 1, there is only one
possible source of bias when rounding. Since operands have
different sizes, and because of the ILSB, there is almost always
a bit set to 1 among the discarded bits when truncating. The
only different situation is when a catastrophic cancellation
occurs, and the result of addition has to be left shifted more
bits than the size of the significand and, as a consequence,
zeros are introduced to the right. However, since the result
of addition may be either positive or negative, this is the
same situation as in effective aligned subtraction (case d=0,
Eop=1). Therefore, the negative sign and the possible bias is
corrected simply by bit-inverting the shifted value when it is
negative. No other possible source of bias exists for actual
FMA operation.

Regarding case 2 due to the ILSB, this operation has to
be treated as a special ”simply addition” operation. This may
be accomplished by either not including the ILSB at one of
the input of the multiplier, or bypassing the multiplier. In both
cases, this is a regular addition and bias sources are exactly the
same as described in previous section. Hence, these bias can be
prevented by using the same pieces of logic as in architecture
A++ (see subsection IV-B). We have to note that the FMA left-
shifter has triple size and the result of addition is situated in the
middle third of it in catastrophic cancellation case. Therefore,
the sequences (0111...) or (1000...) described in the previous
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Fig. 6. Histogram of the error when using A architecture: linear scale (a) and
logarithmic scale (b)
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Fig. 7. Histogram of the error (logarithmic scale) when using: A+ architecture
(a) and A++ architecture (b)

section have to be inserted in the lower third of the shifter
input when a ”simply addition” operation is performed.

VI. EXPERIMENTAL ERROR ANALYSIS

Several numerical experiments have been carried out to test
the effectiveness of the architecture presented in this paper.
In these experiments, we utilized 32 bits two’s complement
fixed-point format within the range (−2, 2), i.e., the format
has one sign bit, one integer bit, and 30 fractional bits. Input
operands were pseudo-randomly generated within the range
(−1, 1) by using C. These operands were associated in pairs
and added producing a 32-bit fixed-point result for each pair.
These results are always in the range (−2, 2) (overflow may
not occur due to the selected range for input operands). These
fixed-point values are the reference values; the input operands
were also converted into 32-bit HUB FP format with only
24 bits for the significand; those HUB numbers were added
utilizing each of the HUB architectures (A, A+ and A++); after
the addition, the HUB FP results were converted back to 32-bit
fixed-point format. The error of the results obtained through
HUB FP arithmetic compared to the one obtained directly in
fixed-point arithmetic was studied.

Fig. 6 shows the three-dimensional histogram of one billion
additions performed using the basic adder A, where white
represents the maximum occurrence and black the minimum
one. The X-axis represents the error of the HUB results
in ULPs, whereas Y-axis represents the value of the exact
addition. Although the errors are bounded by ±127 ULPs, in
Fig. 6(a) it is observed that most of the errors are concentrated
between ±64. Looking carefully, certain asymmetry around
the center can be perceived. To observe more easily the

TABLE II
STATISTICAL PARAMETERS OF ROUNDING ERROR DISTRIBUTION.

Parameters: mean σ mean(+) mean(-)

A 1.86e-13 2.85e-08 5.43e-09 -5.43e-09
A+ -9.31e-14 2.85e-08 1.23e-09 -1.23e-09
A’++ 4.66e-13 2.85e-08 4.25e-09 -4.25e-09
A++ -3.73e-13 2.85e-08 -1.68e-12 2.42e-12

extreme cases, Fig. 6(b) shows the logarithm of the frequency,
instead of the frequency itself. Two different zones of asym-
metry between positive and negative results can be seen: one
for results bounds by ±0.5 which mostly corresponds to case
of subtraction and d=0 or d=1; another for significand results
greater than 1, corresponding to effective additions. In both
cases, positive results tend to have positive errors and the
opposite for negative ones.

Fig. 7(a) shows the results obtained using A+. As expected,
it is easily seen that the asymmetry at the top and bottom of the
image has disappeared whereas the one at the center remains.
A+ is designed to avoid only the bias for the aligned addition
by allowing negative rounding errors for these cases. However,
A++ eliminates all the different sources of bias, as can be seen
in Fig. 7(b), where positive and negative results have the same
probability of having a positive or negative errors.

A more quantitative analysis is provided in Table II, which
shows several statistical parameters obtained in these exper-
iments for each architecture. To study the influence of the
different cases of bias during rounding, this table includes
also a new architecture, A’++, which eliminates only the
cases of bias due to subtractions (when d=0 and d=1), instead
of only eliminating the bias due to aligned addition (when
d=0) as architecture A+ does. As expected, the mean of
the whole set of numbers is always practically zero and
the difference between different architectures is negligible.
Similarly, the standard deviation is identical for all architecture
which indicates that the ”amount” of errors remains the same
through the different architectures. However, the differences
appear when considering the error for only positive or only
negative results (the two last columns respectively). For the
basic architecture A [11], the mean of positive results has a
slight positive bias and the opposite for negative ones. This
bias is only slightly reduced by A’++ and much more clearly
by A+. It is seen that eliminating the bias produced by the
aligned addition has much more impact than eliminating the
bias produced by subtraction. When both possible cases of
bias are removed by utilizing A++ the means drop to typical
values.

VII. IMPLEMENTATION RESULTS

The architectures A, A+ and A++ have been implemented
using VHDL and synthesized with Synopsys Design Compiler
H-2013.03-SP2 and the TSMC 65nm library with typical-
case operating conditions in which the temperature is 25C
and voltage Vdd = 1.0V. The combinational 32-bit version of
these architectures has been synthesized for the same target
clock frequencies and the area and power consumption results
gathered for comparison.
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Fig. 8 shows the area and power consumption results for the
three adder architectures. A conventional adder fulfilling the
IEEE default rounding mode has been added as a reference.
Let remember the difference among them: adder A is the
basic HUB adder [11] which may produce biased results when
rounding; adder A+ can produce unbiased results only for
the case of aligned addition (when d=0 and Eop=0) but does
not resolve the cases of biased results when subtracting and
d=0 or d=1; and adder A++ which performs rounding without
introducing bias.

As it can be seen, the cost of having an architecture able
to produce unbiased or partially unbiased results (A++ and
A+, respectively) is small for low frequencies. In more detail,
the area increase to eliminate the bias due to aligned addition
(A+) is below 3% and even negative (i.e. there is an area
reduction) for 1 GHz. Similarly, there is an improvement in
power consumption, except for 500MHz where it increases
about 5%, as shown in Fig. 8(b). Regarding the area increase
to produce unbiased results (A++), it ranges between 7% and
41%. However, as it is shown in Fig. 8(b), regarding the power
consumption, these bounds significantly increase to 23% and
43%, respectively. These ratios should be lower for a FMA,
since the added logic is very similar but the original resources
are much higher.

We have to note that the source of bias due to the tie
condition in aligned addition (d=0, Eop=0) is much more usual
than the other sources of bias studied in this paper. Taking
this into account, the partial unbiased adder A+ prevents
much bias involving a very moderate increase in the hardware
cost. This is a good candidate for applications where bias
is not an important issue. However, for applications where
the prevention of bias is mandatory, the unbiased adder A++
comes at a moderate increase of cost compared to the biased
adder A.

VIII. CONCLUSION

In this paper, we study the different sources of bias when
rounding after FP HUB addition and FMA. We present and
compare two architectures to deal with these sources of bias.
From the error analysis and the implementation results we
conclude that the adder A++ is a solution (with a moderate
increased cost compared to biased adder A) for applications
where the prevention of the bias is mandatory. On the other
hand, the partial unbiased architecture A+ should be generally
used since it prevents much bias and involves a negligible
increase in the hardware cost. Similar solutions could be
applied to FMA architectures.
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